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Abltract-For a linear elastic structure, the first variation of an arbitrary stress, strain and displacement
functionals corresponding to variation of material parameters within specified domain is derived by using
the solution for primary and adjoint systems. This variation is of fundamental importance in sensitivity
analysis, optimal design and identification problems. Simple examples of optimal stiffness design and
identification of stiffness parameters in beams are presented.

1. INTRODUCTION
In many problems of structural mechanics there is a need to assess the effect of variation of
one or several design functions, such as cross-sectional dimension, shape, support condition, on
the stress or displacement states of a structure. To avoid numerous solutions of boundary-value
problems for modified structural parameters, a variational procedure can be applied and the first
or second variation of the respective functionhl can be obtained in the vicinity of a given state.

The present paper is concerned with such class of problems for which these variations can
be explicitly expressed in terms of variations of design functions. The variations of arbitrary
stress, strain or displacement functionals will be derived and expressed in terms of stress and
strain fields of primary and adjoint structures. Our analysis will be limited to linearly elastic
structures and first the variation of stiffness or cross-sectional moduli within fixed domain will
be analysed. In the second part of this work (Part II) the variation of external or internal
boundaries will be considered and the associated variations of respective functionals will be
derived. The application to optimal design or identification problems will be presented in the
last section of the paper. However the significance of the obtained results is much broader since
the present approach constitutes the foundation for sensitivity analysis, optimal identification of
material or shape parameters and for assessment of structure degradation.

2. VARIATION OF STIFFNESS OR COMPLIANCE
MODULI WITHIN FIXED DOMAIN

Our analysis will extend the previous treatment of the same problem for surface structures,
see Mroz and Mironov[l], and is related to variational approach to sensitivity analysis of
structures, presented by Haug and Rousselet(2). Consider first the case of a fixed domain of a
structure for which the stress and displacement conditions are specified on the portions ST and
S. of its boundary. Assume that stress and strain states are interrelated by the linear Hookes
lawt

(1)

where the stiffness and compliance matrices D and E depend on a set of control functions

tThe dot between two tensors of different orders denotes the summation with respect to indices of the tensor of lower
order. Thus D'E = Dijk/Ekl, O"n= (Tij"i and for two vectors a and b, a'b= aibi denotes their scalar product.
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'Pk = 'Pk(X), In particular, the functions 'Pk can be identified with elastic moduli of the material.
Consider a small variation of 'Pk and E and the associated variation of the stress state

(2)

where liu' and liu" are the stress variation components due to strain and stiffness matrix
variations. For a uniaxial case, these variations are presented in Fig. I. Assuming that the stress
variation field liu satisfies the equilibrium equations and boundary conditions

div liu = 0 within V, 8u .n =0 on ST, (3)

for any kinematically admissible strain field E, the virtual work equation takes the form

(4)

where UO denote the specified displacements on Suo Similarly, for the stress and compliance
matrix variation, we have

(5)

where liE' corresponds to stress variation and liE" corresponds to compliance matrix variation,
Fig. 1. Analogously to (4), for any statically admissible stress field, there is

(6)

where TO denotes the specified traction vector on ST and f denotes the body force vector.

2.1 First variation of an arbitrary functional
Consider the following functional

Gt =f"'(u, cpd dV +fh(u, 'Pd dV +ff(T) dSu +fg(u) dST (7)
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Fig. I. (a) Variation of stress and strain due to stiffness modulus variation of the primary structure. (b)
Stress and strain in the adjoint structure.
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Fig. 2. (a) Primary structure subjected to variation of material parameters; Adjoint structures for stress, (b)
and strain (c) functionals.

depending on stress and displacement fields within V, surface tractions on S", displacements on
ST and on control functions CPk. When 1/1, h, t and g are continuous and differentiable functions
of their arguments, the first variation of G, equals

5G( = f::.5u dV +f:~ 5CPk dV +f:~.5u dV +f::k 5CPk dV +f:~. 5T dSu +f:~.5u dST.

(8)

To eliminate variations 5u, 5T and 8u in (7), let us introduce the adjoint structure of the same
form and material properties, but with the following boundary conditions

T"o= ag on ST, "0- at s (9)
au u - - aTon "'

fa = ah within V (10)
au

and with the imposed field of initial strains E
i within V defined as follows

E i = al/l within V.au
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Since this field does not satisfy the compatibility conditions, it will induce the residual stress
field. Denoting the stress within the adjoint structure by fT', its total strain fielde a can be
presented as a sum, see Fig. l(b),

(12)

and is compatible with the displacement field ua of this structure. The stress field fT' is related
to e' by the Hooke's law

fT' ==D·e'

and satisfies both the equilibrium and boundary conditions

div fT' +fa == 0 within V, fT'· n == T"o on ST'

in view of (2), (4), (11) and (12), the first term of (8) can be retransformed as follows

(13)

(14)

and since the reciprocity theorem is valid, we have

and the first variation of G ir that is eqn (8) is expressed as follows

(17)

It is seen that SG, is expressed in terms of strain fields e and E' of the primary and adjoint
structures and is explicitly related to the variations of control functions.

In particular, when f(T) == 0 on Su, h(u) == 0 within V and g(u) == 0 on ST, the functional (7)
takes the form

(18)

and the boundary conditions for the adjoint structure are

(19)

whereas the initial strain field e i remains the same. In this case fT' and e' are the residual stress
and strain fields within the adjoint structure. On the other hand, when (7) becomes

G1 ==ff(T) dSu +fg(u) dST,

its variation is expressed as follows

(20)

(21)
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and the adjoint structure satisfies the boundary conditions (9) with vanishing initial strains and
body forces within V.

An alternative formulation can be presented when the objective functional depends on the
strain field E, displacement field 0 within V and on ST, traction field T on Su as well as on
control functions CPk, that is

(22)

where cP, t, g and h are continuous and differentiable functions of their arguments. The first
variation of (22) equals

S02 = I~: 'SE dV +I~ SCPk dV +I~~ 'So dV +I::k SCPk dV +I~; 'So dST +I:~.ljT dSu'

(23)

Let us introduce now the adjoint structure satisfying the boundary conditions (9) and (10), and
with the imposed initial stress field

a
i
= ~: within V, (24)

for which the corresponding initial strain field is E
i = E· ai, see Fig. l(b). The stress field within

the adjoint structure is a' with the associated strains E' = E· a' and the total strain and
displacement fields are E

a
, oa. The 'total' stress aa of the adjoint structure equals

Obviously, the stress field a' satisfies the equilibrium and boundary conditions

diva' +fa = 0 within V, a' .n = T"o on ST,

(25)

(26)

and ua = 0"0 on Suo In view of (24H26), the first term of (23) can be retransformed as follows

and since

the variation S02 by virtue of (9), (10) and (27), (28) equals

(29)

where a is the actual stress field of the primary structure and aa is the 'total' stress field within
the adjoint structure associated by the Hooke's law aa = D· E

a with the compatible strain field
Ea.

It is easy to show that the expressions (17) and (29) are equivalent provided

(30)
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In fact, we have

and
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(31)

(32)

where ( ).,. and ( ). denote values for constant (]' or E, respectively. Since (&).,. is the value
of BE for O(]' = 0, from (2) it follows that

(33)

Substituting (33) into (32) and using (24), (25), it is obtained

(34)

and since D· E = I, there is

(35)

Substituting (35) into (34), we have

(36)

that is, equivalence of the expressions (17) and (29). It is seen that the first variations of
functionals G1 and G2 can be expressed in terms of strain or stress fields of primary and adjoint
structures.

Let us note that the derived expressions can be applied in the case of beam of surface
structures, such as plates or shells for which the shape of the median surface is specified but
the thickness is allowed to vary, see [1]. The control function can then be identified with
thickness and the variation of any stress or displacement functional due to thickness variation
is expressed by (17) or (29) with proper replacement of stress and strain by generalized stresses
and strains.

2.2 Second variation of an arbitrary functional
The expressions (17) and (29) for first variations of G1 and G2 can now be used in deriving

the second variations. Consider first the functional G1• From (17), it follows that

(37)
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Using the virtual work equations

and

where

the two terms occurring in (37) can be retransformed as follows

and

The expression for second variation of 0 1 can thus be presented in the form

683

(38)

(39)

(40)

(41)

(42)

(43)

Consider now the particular case when the functional 0 1 coincides with the complementary
energy, that is

(44)

where W(O') denotes the specific stress energy_ Comparing (44) with the general expression (7),
it is seen that
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i aw
E - - - E E

r = 0, E
a = E, u"o = U

O- au - ,

fa = 0, u r = 0, T"o = 0, (46)

that is the adjoint structure, Fig. 3, is characterized by the same displacement and strain fields
as the primary structure and vanishing stress field u r

•

In view of (17) and (46) the first variation of lIe,. now equals

and the second variation is expressed as follows

(47)

(48)

that is by the sum of two quadratic forms of Su and f,(pk. The expression for the second

0)

0'=0
SU EQ=E

uQ=u

TOo=O

v

b)

c)

Fig. 3. Primary (a) and adjoint structures for the case of variation of complementary (b) and potential (c)
energy.
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variation of O2 is expressed similarly to (43), namely

685

(49)

where it was assumed that h = h(u), that is independence of the function h on design variables
<PIc. Consider now the particular case when O2 coincides with the potential energy of the
structure, thus

where U(E,<p/c) denotes the specific strain energy. Since now, we have

q,=U(E,<p/c), h= -f·u, g= -ro'u, 1=0

and

. iJU
(T' =-..- = (T (T' = - (T, (Ta = 0, u'\l = 0

iJE '

fa = f, E' = - E, ua =E
a = 0, T'\l = - ro,

in view of (29) and (49) the expression for the first and the second variations of nu are

and

(50)

(51)

(52)

(53)

(54)

Let us note that now the displacement and strain fields within the adjoint structure vanish
whereas the stress field is the same as in the primary structure. The expressions (53) and (54)
were already derived in [5] in a different manner.

3. OPTIMALITY CONDITIONS FOR OPTIMAL DESIGN AND IDENTIFICATION PROBLEMS

The typical problem of optimal design is formulated as follows: minimize the cost of the
structure with imposed behaviour constraints expressed in terms of stress, strain or displace
ment fields, thus

J =fF(<p/c)dV -.min<p

subject to the global stress constraint

(55)

(56)
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or displacement constraint
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(57)

and other geometric shape constraints which will not be considered here. The functional G,
now takes the form

(58)

or

(59)

where>.. denotes the Lagrange multiplier and Ho, Lo are specified parameters. In view of (17),
the first variations of (58) and (59) now equal

(60)

and

(61)

The stationarity condition 5G, = 0 provides the relations

(62)

and similar relations for the stationarity of G;. The second equality (62) requires either H, = 0
or 5>" = O.

An alternative formulation of the optimal design problem would require the minimization of
G1 or G( with the upper bound set on the structure cost, thus

min G subject to 1.;; 10 , (63)

Introducing the functional G= G1+ >"(1 - 10), the conditions of stationarity of G are expressed
as follows

5Gr = - >"51, 5>"(1 - 10) = 0 (64)

and we obtain the relations equivalent to (62). Consider, for instance, the glooal compliance
design when the complementary energy II.,. of the structure is to be minimized. Combining (47)
with (64), the optimality conditions take the form

BW=_>..BF
BCPk BCPk

(65)

which was already discussed in [5]. The identification problems differ from the optimal design
problems only in the absence of cost function which is usually not associated with the
identification procedure.

Assume, for instance, that the displacement field Um was measured over some control
surface Sm/which may be a portion of STI. For specified shape of a structure, the problem is
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reduced to determining a set of functions or parameters which occur in the stiffness matrix,
D=D(cpd, k =1, 2, .. K, so that the distance between the measured and calculated displace
ments Urn and U over Sm is minimized. Let the measure of this distance be

(66)

Introducing the adjoint structure satisfying the boundary conditions

(67)

the variation of Gl is expressed as follows

(68)

and the condition ~Gl = 0 provides the necessary optimality conditions

(69)

In particular, when the stiffness matrix is uniform and depends on a set of parameters CPk to be
identified, instead of (68), we obtain

(70)

and the optimality conditions are

(71)

4. EXAMPLES

In this Section, three simple examples will be presented, where the optimality conditions
discussed in the previous section are used and the·variation of a stress functional is expressed
in a particular case. However, the applicability of the obtained results is much broader.
Moreover, they can be extended for the sensitivity analysis in the case of shape variation.

4.1 Example 1. Optimal design of a beam in order to minimize its maximal deflection
Consider a sandwich beam shown in Fig. 4 composed of I segments of sheet thickness tit

f2, .... f[ and constant thickness of the core equals 2h. The beam is simply supported at one end
and built-in at the other end. Under specified lateral loading T(x), and specified lengths of
segments 1;, the design is aimed at determining the values of tit t2'" t, corresponding to minimal
cost of the material and satisfying the constraint u(x) ~ uo, for xe(O,L), where u(x) denotes the
lateral displacement. Instead of local constraint, let us introduce the global displacement

Fig. 4. Sandwich beam of I segments.
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condition in the form
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0== Jg(u)dx == J(:J" dx. (72)

Note that for n ~OO, g(u)~O for u < Uo and g(u)~oo for u;;. uo. Thus, for large values of n,
the displacement exceeding the value Uo will induce a large contribution to the global measure
(72). The cost of the beam is expressed as follows

I

C == 2bCoL tj(l, - Iii)'
i==1

(73)

where b denotes the beam width and Co is the specific material cost. Instead of setting the
constraint 0 ~ 0 0 and minimizing C, let us study the evolution of design with respect to
uniform thickness design of the same material volume. We therefore formulate the problem as
follows

min 0 subject to C == Co.

Introducing the adjoint beam, its loading is specified as follows

T;"(x) ==~(~)n ==!.l-. (Ui )n.'I,
aUj Uo Uo Uo

(74)

(75)

where Tt denotes the loading over ith segment. Denoting by MJx, td the bending moment field
in the ith segment and by Mt(x, td the bending moment of the adjoint beam, and noting that the
compliance of each segment equals

(76)

where E denotes the Young modulus, the necessary optimality conditions (62) are expressed
in the form

for i = 1,2, ... 1, and

?JIi Mt(x, tdMi(x, td dx == 4AEh 2b2(li - I H )

I Ii-I

(77)

(78)

These conditions combined with the equilibrium equations, continuity conditions between
particular segments and boundary conditions at x =0 and x = L, provide a set of non-linear
algebraic equations which were solved with respect to ti and A by using the Newton-Raphson
procedure. The solution is illustrated for the case of a beam loaded by two concentrated forces
and divided into four and eight equal segments, Fig. 5(a, b). The following Table I illustrates the
evolution of design with n and the dependence of maximal deflection on n. Figure5(c) shows
the deflection field for the uniform design and optimal designs with four and eight segments and
the same material volume. It is seen that for increasing n, the maximal deflection is gradually

reduced.
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Fig. 5. Sandwich beam loaded by two forces and divided into four (a) and eight (b) equal segments; (c)
Deflection field for optimal designs with four (I) and eight (2) segments and the uniform design (3) and the

same material volume (n = 4).

Table I. Optimal thickness and maximal deflections of a sandwich beam of constant volume
~~======-===============================================[-=============

Exponent Optimal values of segment thickness t i Max. de!!.

uPL
3 1[n} [cm] 2........l _.............. :~g~.~ .

uniform design

- 2.5 0.2183

Four-segment design

2 1.822 3.027 1.422 3.729 0.1985

3 1.816 3.100 1.457 3.627 0.1981

4 1.809 3.145 1.476 3.571 0.1980

Eight-segment design

2 1.041 2.613 3.416 3.301 2.261 0.648 2.197 4.523 0.1786

3 1.018 2.611 3.479 3.390 2.311 0.657 2.153 4.381 0.1782

4 1.003 2.604 3.517 3.448 2.339 0.658 2.124 4.306 0.1780

4.2 Example 2. Identification of beam compliances within specified segments
Consider a cantilever beam of two equal segments of different compliances E b E2 where

i = 1,2. (79)

The measured deflection field due to concentrated load P at the beam end can be approximated
by a parabolic function

(80)
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where (3 is constant. It is our purpose to identify the values of compliances E I, E2 in order to
minimize the squared 'distance' of predicted and measured deflections, thus

(81)

Introducing the adjoint beam of the same support conditions and loaded by, see Fig. 6(a, b)

(82)

the necessary optimality condition is expressed in the form

(83)

which leads to two equations

whose solution can be obtained in a closed form, namely

hi = 1.1925 4(:~), h2 = 1.7 141 4(:~).

(84)

(85)

Figure 6(c) shows the deflection field of the uniform beam having the deflection u =/3L" at the
tip x = 0 and the optimally identified beam.

4.3 Example 3. Variation of stress or strain functionals
Consider a statically indeterminate beam, Fig. 7(a), loaded at its end by the bending moment

Mb• Let the beam curvature and bending moment be denoted by x and M, whereas the beam
stiffness be D = EJ and the compliance E = IIEJ.

Consider the functional G in the form

f fL fL M 3 fL
G = c/J(x,J) dx =Jo Ydx =Jo E3J4 dx =Jo l/f(M,J) dx. (86)

bl

oj

J~I.---.~_JL ------,"I
f u] ~_.l iLlJ. .

02

o~ . -+--~o._ --t- + --1

osl-""""'-H- .i-

I

Fig. 6. Cantilever beam of two segments of different compliances; (a) Primary beam, (b) Adjoint beam, (c)
Deflection field of the optimal beam (I) and uniform beam (2) compared with measured deflection (3).
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Fig. 7. (a) Beam loaded by the bending moment Mb• (b) Adjoint beam subjected to the initial moment field.

Let us derive the first and the second variations of G corresponding to the variation of beam
stiffness by using the general relations derived in Section 2. The bending moment within the
beam is expressed as follows

(87)

The adjoint beam is subjected to the initial moment field, see Fig. 7(b)

and

or Z M i M' M O 3 Mb
2

(1 3x)2 RLJK = + = = -;::;TT1 - -- + aX
E J 2L

(88)

(89)

where RB denotes the support reaction at B. Satisfying the boundary conditions at X = 0 and
x = L, we find

(90)

The first variation of (86) can now easily be calculated. Since

(91)
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in view of (29), we have
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-i L
4M/( 3X)3SO - 0 - E3J5 I - 2L 8J dx. (92)

The second variation is now expressed as follows

(93)

5. CONCLUDING REMARKS
The present paper generalizes the results of previous works [1-8] and provides a systematic

variational approach to sensitivity analysis and optimal design for structures of fixed shape with
varying material parameters. The analysis is limited to linearly elastic structures for which the
concept of adjoint structure provides an effective tool in generating first and second variations
of arbitrary volume or surface integrals. Only static problems are discussed. However, the
generalization to dynamic problems, when the functionals are defined over space and time
domains, can be obtained by following the present analysis.
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